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The primary current distribution was calculated in cells with a curvilinear shape of the electroc
the finite difference (FDM), the conservative scheme (CS), and the finite element methods (
These methods were used for the solutions of the Laplace equation (LE) for a 2D cross-secti
cell consisting of two concentric cylinders (tubes) as electrodes and the inter-electrode spac
with electrolyte. For this cell the analytical solution of LE is known. The local current density ol
approximated shape of the electrodes was calculated. The error in the normalized locatlensignt
relative to the mean was 5.2%, 52% or 0.2% with FDM using & &4 mesh, CS using 6464 mesh
or FEM using 969 nodes, respectively. Also the boundary element method (BEM) has beer
With 199 elements at the electrode the error in the normalized current density was 0.2%. Takir
account the simplicity of programming and the possibility of using previously developed modu
other calculations, FEM and BEM showed the best performance.

Key words: Primary current distribution; Curved electrodes; Numerical methods.

One of the technically important problems in electrochemistry is to find the local
rent density ¢d) on electrodes, which have curvilinear boundaries of irregular sh
The shape of the cell is usually so complicated that it is not possible to find a cor
ent mathematical transformation of coordinates, which will simplify the calculatio
the Laplace equation (LE) in the inter-electrode shaDee example is the aluminiun
electrowinning cell, which has two curvilinear boundaries, one of which is the ar
the second one is the shape of the frozen cryolite leddesimilar case is met in leac
acid batteries with tubular lead dioxide electrodes treated by Landfors and Simpasso
the authors also mentioned problems with the approximation of the curved bounc
The curvilinear boundaries are approximated in different ways for different mett
as recommended in the literature concerning FDM, CS, and FEM-3fefs These
approximations may lead to a change in the length of the curvilinear boundary an
the averagecd may change considerably. Also the local valuesaflepend on the
approximation of the boundary. The problem of discontinuities of the local valwes
on rounded corner of electrodes using FDM was observed for the case of primar
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rent distribution by Prentice and TobiaZo solve the problem, lest square smoothi
was performed over the electrode surface, which was divided into several parts.
were smoothed separately and then joined by splicing functions. Because both
tions are of technical importance and no comparative analysis has been found
literature, this study is an attempt to fill the mentioned gap.

RESULTS AND DISCUSSION

The Solution of LE for the 2D Cross-Section of the Cylindrical Cell

To test the above-mentioned methods, a cell with two symmetrical cylindrical
trodes of radius,andr, was used with the electrolyte occupying the space betweer
outer and inner cylinders. One quarter of the 2D cross-section of the cell is consider
Fig. 1. For the inter-electrode space filled with an electrolyte of resispvionduc-
tivity k), the Laplace equatiori) is valid. (In this studp = 1Q cm, k =1 Q1 cnt?)

0% =0 @

In a polar coordinate system, Ed) (akes the form:

0% 100 _
a2 Tror 0 @)

The analytical solution of Eq2) is given by

d=A.Intr+B, . 3)
99 _
s
p
Nk
\\ B =
@ - O
V4 ox
‘\ Fe. 1
N The shape of the 2D cell with tubular anode at
. c cathode.A anode with potentiap(r;) = 1.0 V,C
y ™~ f cathode with potentiap(rg) = 0.0 V,B inter-elec-
trode space in which LE was solved. For all cas
X ry=16 cm,ry = 64 cm
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The parameter8,, andB;can be determined from the boundary conditions valid for
case of unpolarized electrodes, i.e. primary current distribution:

o) =00V , ¢(r)=1.0V . éa,b

From these boundary conditions the following coefficients are obtained:

1
=—, ©)
In-*
l'o
Inr
B.=-—" . 6)
M
In—=
l'o
For the potentiad in the inter-electrode space we have:
1 r
o(r) = Inr . U]
1 0
In—
l'o
The localcd in the radial (normal) direction is defined as
. ¢ O
iN==«5 0. ®
o
The cathodig(ry) and anodicds j(r;) are given
. -K 1 . K 1
="~ ="~ (a.b
1'0 171
In— In—
l'o l'o
The theoretical value of the currdgjis then:
—2TK
lip = o (20
1
In—
l'o
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Definition of Quantities Used for the Description of the Results

By all methods, the values of the potentials were obtained in the inter-electrode
From these values thed at the electrode was calculated. With CS the current der
normal to the boundary was evaluated as

=L, (11)

wherel represents the length of the unit rectang)eot its diagonalt{v2) in the mesh,
see Fig. 3.

With FEM and FDM normatd to the boundary was evaluated in each node lying
the boundary by using a first-order approximation with errdr) Olhe normalizedd
at the cathode is equal to

i
g

i=1,2,...N 12

and at the anode

o
")

i=1,2,...N, 13

whereN represents the number of units on the boundary. The mean normalized
of cd was defined by

- 1o 17
Jn:NZJn,i]fD' 14
i=1

wherel® represents the average length of one unit, given by

0=

Z|-

N

LR s
i=1

The length of the approximated electrode boundary is

N
o= 17 (16)
i=1
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The normalized current at the electrode was calculated as

=ik, (€]

wherelL, is the boundary length normalized by the theoretical boundary I&pgth

o
L—L

=, 18
=1 (18

The standard deviatiomw) of the normalizedd is given as

2

1 o, I
= %ﬁ > (jn,i‘flm_]_n)z : (199
i=1

The error (in %) of the normalizexd (j_n) is forN > 6 equal to
€=+20100 . 9b

The error (in %) of the normalized currey)(is defined by
=%|,-1] 100 . 199

Averagedcd over p units is given by

1=,

- 1 . . .
Jn,p,k:BZJn,i . =k=(-D/2, i,=k+(p-1)/2 . 20

Finite Difference Method

With the FDM the shape of the boundary was not changed, i.e. all the potentials
anode were located at= r, and all the potentials of the cathode were locatad=at,,
(Fig. 1). For a central point,j) the LE was approximated by

L 9%
x2 ay?

i
J-IH:H:I

=2 L (@06 +10) + 0~ 1)+ + D+
+ 9@ = 1) - 493i.)) + o) . @1

d
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If the surface of the electrode is represented by a smooth curve for a 2D cross-s
the approximation of the LE by EqR1) has an accuracy &) (ref®). For points i(j)
located near the boundary the following equation was used, valid forAdanFEig. 2.

1

A
dy?

X2

d

d
4=
Yl

10 ¢¢ bg be
2 h1+a) T 1+a birn) "

, b0 _ (@+D)g,0
1+b ab

O+ O(h?) . (22

Depending on the shape of the boundary, different modes oRBqwére developed,
see Table | and refé. The resulting matrix of coefficients is usually asymmetric, |

TaBLE |

Values of the coefficienta andb used in Eq. Z2) for different point types. See also Figs 2 and

Point type da dg a b Comment
1 0.0 0.0 b
2 0.0 (i + 1)) a 1
3 oG,j + 1) 0.0 1 b
4 - - - - o(i,j) = 0.0
5 - - - - o(ij) = 1.0
6 1.0 o - 1)) a
7 ¢G,j — 1) 1.0 1
/
>
E
bh
A B
c
h
ah h Fic. 2
The scheme of the curvilinear boundary and t
D points necessary for approximation by interpol
tion for FDM. See also Eq2®)
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there exist methods for obtaining a symmetric maftidhe values of the coefficient
aandbin Eq. £2) are given for different point types in Table I, as indicated in Fig

and 3.

Table 1l shows maximum and minimum values of the normalcteabtained by the
FDM, mean normalized value efi, standard deviation of the normalized and the
normalized current. From this table we can conclude that:

1. FDM is not a conservative method. FDM leads to different anode and cal
currents. By increasing the number of calculation points in the mesh the error |
normalized current decreases from 8.5% (]0.9151 — 1| . 100) fox &rBesh to 1.2%

(10.9878 — 1| . 100) for a 6464 mesh.

TasLE Il

Normalized values otd, j_n, o, andl,, obtained by FDM. A anode; C cathode

Mesh . . -
dimensions ~ Clectrode Jmax Jmin In o n
8x8 C 1.0494 0.9876 1.0264 0.0507 1.0265
A 0.9819 0.8482 0.9151 0.1336 0.9151
16 x 16 C 1.0309 1.0018 1.0166 0.0321 1.0166
A 0.9975 0.9018 0.9547 0.0647 0.9547
32x 32 C 1.0159 1.0005 1.0082 0.0215 1.0083
A 1.0001 0.9437 0.9758 0.0441 0.9762
64 x 64 C 1.0079 1.0000 1.0039 0.0137 1.0039
A 1.0000 0.9700 0.9878 0.0261 0.9878
ah \ [ bh
211
AR AN L—A
X<
19
i 3
Fic. 3 6 \
Finite difference mesh 8 8 with the boundary \
point types 1 to 7A rectangle covering points for U
the calculation ofd with O(h?) error at point 1h 5 4

nodes distance
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2. The local values of normalizemii oscillate around the mean normalizsdj but the
oscillations decrease considerably with increasing humber of mesh points. Fox Be
mesh the error in the local normalizedlwas 26.6% (2 . 0.1336 . 100) and for the me
of 64 x 64 points the error was only 5.2% (2 . 0.0261 . 100).

Local normalized current densities along the cathode obtained by FDM for the
with 64 x 64 calculation units are given in Fig. 4.

Conservative Scheme Method

The electrolytic cell shown in Fig. 1 was considered. The inter-electrode space
divided into rectangles and the electrodes were approximated by boundaries ¢
tangles. In the other case some parts of the electrodes were approximated by di
(Fig. 5). The boundaries for the ¥616 units are shown, but the calculation has a
been carried out for 8 8 units, 32x 32 units and 64 64 units. For more details abot
the method see réf§ The currents flowing in and out of the unit rectanglp are
denoted according to Fig. 6 ks. The first subscript refers to the unit boundary line
which the current leaves the cell, and the second to the boundary line at whi
current enters. For example, a current going from the boundany fine to the linen= 2 of
the neighbouring unit is written as:

= H0- 1) =00) =ACjLD 23
PG = 11) 55+ P10) g

Equation 23) can be rewritten as:

i—1))-¢@,)) - Ai,,1,
I, ,=—2 2L =0 = A1 (24)
' p(i = 1j) +p(ij)
1.0100 , , T .
Jn
1.0075 - /
1.0050 - |
Fic. 4
100251 Local normalized current densities along th
' |1 cathode obtained by FDM. Mesh of &464
calculation unitsj,, — Normalized locakd at
the cathode, see also Eq2), I, , — normalized
1.0000 cathode boundary length, (- at the begin-

1 1 Il 1
000 020 040 060 080, 100 ning andl,,-; at the end of the cathode)
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Similar equations are valid fdg ,, |15 4andl 3

5 0+ 1)) = 6(.j) ~Alij,2,
247" p(i + 1)) +p(ij) ’ @3
_ o 00j-1)-6G,) - Aij3.9
'34=72 p(i,j — 1) +p(i) ’ (©6)
o = o0+ D=0, ~Al}.43 @7

p(i,j + 1) +p(i)

In Egs @3) to (27), the termsA(i,j,k,|) represent the voltage drop at the boundary

tween the sidek andl of the unit. This voltage drop is equal to the electrode poter
at the electrode—electrolyte boundary. In the electrolyte, or in the electrode ma
A(i,j,kl) is equal to zero. For the stationary state, the integral oédi{g,) normal to

the surface (8 along the boundary of the unit rectangle, must be equal to zero.
applies also for any closed surface or volume in the cell:

gfjnds:o . @9

X

FGc. 5
CS method. Curved anode boundary approximation using two methdasindaries formed by rec:

tangles,b boundaries formed by the combination of rectangles and diagonals. Mesh<df6l@nits
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Equations 24) to (27) are used for the evaluation of EQ8). Alternatively, Eq. 29)

can also be used,

liotlpgtlzatly3=0 . @9

On the basis of Eq28) and @9) the residuunR(i,j) can be introduced:

(=1)) = 0(@,)) | o(i+1j) =@

R(ij) =2

(i—1j) +p(i.j)

p(i +1J) +p(i.j)

L 00 =1)=0G0) | 60 +1) =)L 30

P = 1) +p(i.j)

p(ij+ D +pi)g

Equation 80) is valid for the electrolyte or electrode material, where the ta(ijsk,I)
are set equal to zero; it is satisfied if for all the poinjki6 the 2D space

R(ij)=0,

LjoQ . 31)

Equation R9) represents the so-called conservative scheme for the calculation of
vani potentials in the considered space. (“Conservative” means that all the current
ing into the cell also flows out.) The conservative scheme with resi@R{uingiven by
Eqg. (30) also fulfills the LE for a space with changing resistivity.

(i-1,+1) (ij+1) D
o' a2 | o a1, o

AN

(i-1j) 11,2 m=1 o m=2 IZ,l
o

P
— (I+1J)

L
lLa / I5.4 L \’2,4
-] \—>

R ¥ ° la ©
(i-1/-1) (ij—-1) (i+1j-1)

Fc. 6
CS method. Notation of currents for a rectal
gular grid in 2D space. The fluxes are denot
as | and the indices follow the notation o
boundaries. Boundary indices of the calcul
tion unit are denoted an
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D(%D(I)) =0 32

Equation 82) can generally be approximated in such a way that the conservati
current is not preserved. The most often used approach which is not conserva
FDM.

The curved boundaries were approximated by using: (i) a boundary of rectar
elements, (ii) boundaries formed by a combination of rectangular and diagona
ments (diagonal approximation of the bound&ry) Fig. 6, all the possible fluxes ar
denoted, which may be used if rectangular or diagonal boundaries exist outsid tl
unit. For the case of rectangular boundaries E9).i6 valid. For the case of a unit ce
with diagonal boundaries in Fig. 7, the analogy of 2§) éhould be written as:

lyotlgatlpatlygtloat1,2=0 . @33

For the fluxed,,andl, , denoted by the dotted arrows in Fig. 7, the following forn
lae are valid:

_ (- 1j+ D) - 6(ij)
2= o = 1j+ 1)+ pli) 33h)

_0G+1j -1 - (i)
247 o+ 1j - )+ p(ij) (339

1(/- 1j+1) (i+1,j+1)
| O - | | 0
Iy la1 /‘123
h2 /
— o

(i-1,j+1) o
o la2 g1 (i+1j+1) -
o I
‘ I3,4 !’
FG. 7 ' (i+1j-1)
Curved boundary approximation using diago- -
nal boundarya the shape of the diagonal ele- b

ment, b position of the diagonal element in L
the mesh and its fluxes a 24y
-]

(i+1,j-1)
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In Table IIl the results of the calculation of the normalized lodadt the boundaries
of the electrodes by CS are shown. The calculations were carried out by usin
meshes with & 8, 16x 16, 32x 32, and 64x 64 units, and rectangular and diagon
approximations of the curvilinear boundary. The results for both electrodes are
For the mesh of 64 64 units, the normalized locad along the cathode for bott
approximations are given in Figs 8 and 9. Averaging of the normatidedas also
carried out, and the obtained resultsgor 5 units (window widths) are given in Figs 1
and 11. The averaging improved the local normalbdalues to a small extent. How
ever, the length of the averaging interval (or pheumber), for which the errors ar
restricted to 2%, represents the whole length of the cathode. pargmbers are not
suitable for an irregularly shaped curvilinear boundary, because usually the gec
will not be uniform and continuous as in the studied case. This means that large

TasLE Il
Normalized values o€d, j,,, o, andl,, obtained by CS. A anode; C cathode

Mesh dimensions

and boundary  Electrode  jax Jmin j_n o n L,
aprox. type
8x8 A 1.2358 0.5414 0.7625 0.2672 0.9709 1.2732
Rectangular C 0.9813 0.5437 0.7625 0.2562 0.9709 1.273
16 x 16 A 1.4084 0.5310 0.7950 0.2674 1.0123 1.2732
Rectangular C 1.0951 0.5993 0.7950 0.2236 1.0123 1.273
32x 32 A 1.3812 0.4916 0.7980 0.2798 1.0161 1.2732
Rectangular C 1.1752 0.4997 0.7980 0.2440 1.0161 1.273
64 x 64 A 1.3432 0.4893 0.7895 0.2697 1.0053 1.2732
Rectangular C 1.2385 0.4666 0.7895 0.2533 1.0053 1.273
8x8 A 1.1974 0.5436 0.9791 0.2637 1.0183 1.0401
Diagonal C 0.9902 0.8995 0.9371 0.1348 1.0183 1.0867
16 x 16 A 1.3292 0.5391 0.9209 0.2765 0.9793 1.0634
Diagonal C 1.0314 0.6247 0.9012 0.2700 0.9793 1.0867
32x 32 A 1.3259 0.5428 0.9477 0.2636 0.9967 1.0518
Diagonal C 1.1380 0.6110 0.9583 0.2400 0.9967 1.0401
64 x 64 A 1.2889 0.5348 0.9528 0.2591 1.0221 1.0518
Diagonal C 1.1334 0.5539 0.9635 0.2512 1.0221 1.0401
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(20%) in local normalizedd can be expected, even when some reasonable avere
of thecd is employed.

The following conclusions about CS are worth mentioning:

1. When the electrode boundaries are approximated by a boundary of rectangl
ratios of the maximum and minimum values of the local normalizigd the theoreti-
cal one reached 1.41 and 0.466. Tdevalues did not tend to become more unifor
with increasing number of units in the mesh. The mean normalized current den:
approximately 76—80% of the theoretical value, due to the increase of the length
boundary used in comparison with the theoreticals 1.27.

1.00 |

0.80 | 4

- [

Normalized local values ofd (j,,) along the
normalized cathode boundar ). CS rectan- 0.40

Il I Il 1
0.00 0.20 0.40 0.60 0.80

gular boundary approximation; mesh 464 len 1.00

1.60 [ . .
Jn
1.40
1.20 | |
1.00
0.80 | i
0.60
Fic. 9

Normalized local values ofd (j,,) along the

normalized cathode boundarl, ). CS diago- 0.40 . ! L !

nal boundary approximation; mesh 8464 0.00  0.20 0.40 0.60 0.80,  1.00

c,n
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2. When the electrode boundaries are approximated by a boundary of rectangl
diagonals, the ratios of the maximum and minimum values of the normalized:tbc
to the theoretical reached 1.33 and 0.53. These values did not tend to becom
uniform with an increasing number of units in the mesh. The mean normalized ct
density is close to the theoretical value, i.e. 0.90 up to 0.98. This is due to a
approximation of the boundary;, changes between 1.04 and 1.08. The error of
calculated potentialg(r) is about 50% of the theoretical value near the boundaries
at a distance of 3 units from the boundaries the err@i(rinfalls down to about 1%,
and in the middle of the cell it is below 0.2% for the %6464 mesh. The different
approximations of the curvilinear boundary create different cell geometries, whic

1.20

In

1.00

OSO L 1 1 1
0.00 0.20 0.40 0.60 0.80
Fic. 10
Normalized localcd (j,,) at the normalized cathode boundaly,X after averaging wittp = 5. CS
rectangular boundary approximation; meshx6@4

1.20

n

1.00 L

0.80

1
0.00 0.20 0.40 0.60 0.80 1.00

Fic. 11

Normalized localcd (j,,) at the normalized cathode boundaly,X after averaging wittp = 5. CS
diagonal boundary approximation; mesh 644

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



Primary Current Distribution 1577

sult in different error distributions, see Figs 8 and 9. The cathode length used in |
and 9 is referred to the theoretical length of the whole cathode.

Finite Element Method

The interelectrode space (Fig. 1) was divided into triangular elements by sele
points on the boundaries (electrodes) as shown in Fig. 12. The transformation
boundary problem to a variational formulation in Galerkin’s fofrwas done for the
Laplace equation written ix, y coordinates:

02¢ 02¢
—+—7=0, ,ydQ 34
0x2 ()y2 %y ( )

valid for constantp. The essential boundary condition was applied to the anode
cathode boundary, denotedlas

¢=f(xy) , on,. 39
On insulated surfacds,, the normal component of the current is prescribed

9% _ 9 _
ox - =0 onl,, (36)

Ja="K ay

0 orj,=—«k

corresponding to the nonessential boundary condition. Consequently:

40.00

Fic. 12
The finite element calculation mesh. 45 0.00 ‘
X 0.00 20.00 40.00 60.00 80.00
nodes and 66 triangles X, cm
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F=ro+r,. 37

By using the Galerkin’s variational statement and rearranging the weighted integ
the residual using Green’s theorem, the variational formulation of 3.was ob-
tained in the form:

D 05™ 9 06¢<">D )
J’J’Dax 5 oy - o dy = J’ 30 dr . 39

This formulation is suitable for the application of FEM. The elements and nodes
numbered to specify the element-node correspondence. Thus we obtain a sys
equations which can be written in the following form:

MOGE=FO® | edQ , 39

whereM® s the characteristic matrix of the element &Wlis the vector of the right-
hand sides. As a further step, EGS)(for all the elements were summed up giving t
resulting matrix equation

Mo=F . 40)

The matrix of the system is denotedMsand the unknown system nodal vectoﬁas
All the nodes in the given domai@ are now referred to by the global numberil
system froml to m, wherem is the total number of nodes @. Firstly the essential
boundary conditions are introduced, then the system of linear equations has
solved to obtain the vect«’fr for all nodal points. For more details, see réfs

In Table IV, the maximum and minimum values of the normalizdbtained with
the FEM are given. The following conclusions follow from Table IV and Fig. 13:

1. The FEM is not conservative, which means that the total current on the ant
not the same as the total current on the cathode. The deviations of the calculat
malized current from the theoretical wetr®5%, at a low number of nodes equal to 2
They tend to zero, when the number of nodes increases. For 969 nodes the erro
total normalized current was ony2.1%.

2. The error in the local normalizestl was £1.2% for 27 nodes, and it decreas
with an increasing number of nodes. For 969 nodes, the error in the local norrodli:
was only 0.24%. As shown in Fig. 13, only small changes in the ¢okappear at the
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ends of the cell space, where nonequilateral triangles were used. By avoiding the
nonequilateral triangles a very high accuracy can be achieved.

3. The approximation of the shape of the boundary by triangles can be very cl
the theoretical boundary. For 27 nodgswas 0.9935, and for 969 nodes it was 0.99'
For more information on the methods used in the present work see Appendix.

Boundary Element Method

Also the boundary element metfo@BEM) with constant elements has been used
the solution of the Laplace equation in 2D. This numerical method calculates onl
unknowns at the boundary of the domain, requesting additional calculations to g
values of the potential anctl in the domaift It is possible to use advantages of t
combination of the BEM and FEM (ré).

TasLE IV _
Normalized values o€d, j,, o, andl,, obtained by FEM. A anode; C cathode

Number of nodes

and triangles Electrode Jmax Jmin In o n
27 nodes C 0.8613 0.8518 0.8572 0.0039 0.8572
36 triangles A 1.1654 1.1531 1.1584 0.0056 1.1584
45 nodes C 0.8897 0.8811 0.8861 0.0033 0.8861
66 triangles A 1.1297 1.1191 1.1235 0.0044 1.1235
149 nodes C 0.9448 0.9399 0.9435 0.0017 0.9435
252 triangles A 1.0626 1.0572 1.0586 0.0020 1.0586
313 nodes C 0.9632 0.9597 0.9625 0.0010 0.9625
558 triangles A 1.0413 1.0377 1.0384 0.0012 1.0384
969 nodes C 0.9795 0.9775 0.9792 0.0005 0.9792
1 815 triangles A 1.0207 1.0164 1.0204 0.0012 1.0204

0.99 T
Jn
0.98 B
N T
0.97 I I I )
0.00 0.20 0.40 0.60 0.80 / 1.00
c,n
Fic. 13

Normalized local current densitigg)(along the normalized cathode bounddyy) (obtained by FEM Mesh
with 969 nodes
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The results obtained by the use of the BEM were very similar to those obtainec
the FEM. With 199 boundary elements on the cathode, the error in the nornwliz
was 0.2% (but the number of unknowns was onby #99). In Fig. 14 the normalizec
current density along the cathode, calculated using the BEM, is shown.

1.012 T w . :
Jn
1.008 | E
1.004 |
Fc. 14
1.000 - 4 Normalized local current densitief,)(along
( w the normalized cathode boundaity § ob-
tained by BEM. 199 constant elements at tl
0.996 ) ‘ ‘ ) cathode boundary (4 199 unknowns in the

0.00 020 040 060 080, 100 Wwhole cell).

CONCLUSIONS

For the cells with primary current distribution and curved electrode boundaries st
in this paper, the following recommendations for the use of FDM, CS, and FEM c:
made:

Firstly, FEM is recommended because of low errors, less than 0.2% in the
malized localcd, using approximately 1 000 nodes in the inter-electrode space.
method can be easily programmed. Mesh generators, which minimize the num
nonequilateral triangles at the electrode boundary, should be used. The nonequ
triangles are sources of local errors. The error in the mtdkbcreases with increasin
number of triangles and with the use of nearly equilateral triangles. Developed mc
can be used in different calculations.

Secondly, FDM leads to small errors, less than 5.2%, in the normalized:theath
a 64x 64 mesh. The error decreases with increasing number of points in the mest
neighbouring points may have errors of different signs in the ttalhe normalized
local cd differs by one to two per cent from the mean normalized

Thirdly, the CS methods lead to high errors in the ledgapproximately 50%), anc
these errors change sign for two neighbouring rectangles. When increasing the r
of points in the mesh, the errors in the loodbre not damped appreciably. Hence, tt
method cannot be recommended for curved electrode boundaries.
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APPENDIX

For a cell that has curvilinear electrode boundaries for which suitable mathem
transformation cannot be developed (see'eapproximations of the shape of the
boundaries have to be used. Each of the above-mentioned methods has its own r
the approximation of the curved boundary.

Finite Difference Method

The numerical approximations for the Laplace equation at calculation points alor
boundary are significantly different from the formula valid for the bulk electrol
(compare Egs2(l) and @2)). To take into account all possible cases, 7 point types t
to be introduced, see Figs 2 and 3, and Table I.

The programming process should have the following steps:

1. Construction of the basic mesh system.

2. Determination of points close to the boundary and their types.

3. Determination of their distances from the boundary in both directions.

4. Definition of equation coefficients according to point types.

5. Solution of the resulting system of linear equations.

6. Calculating the current densities.

Two different methods can be used to calculate the current densities. The progra
is easier when using a first-order approximation taking into account one mesh poil
a value of the potential at the boundary. The second-order approximation uses
quidistant local meshes for the calculationcdf One of them is illustrated in Fig. 3
With a nonequidistant mesh, the method of undetermined coefficients can be u
develop the formulae in thedirection. The following formula is used for the local

M) =Y 6 f(x) +R() . @1

The coefficients should be chosen in such a way as to digir 0. When
f=1;xx% x5 ...; x", a following system of linear algebraic equations is obtained.

Cptc+c,=0

K
ot e+ + 6% =0 (=S (1|

Cot+eXct+ L+ xkt=0
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k
cob e+t o=k (=500 Ik

CEL o)t + L +ex=(k+ 1) !X

cod+epd+ .. +cx=nn-1) ... (n—-k+1) ! X" (42

In they direction the points for the calculation have to be obtained by interpol
using neighbouring points. The resultiodis obtained as a vector summation of the
two local current densities. This method is accurate but time consuming for progr
ing. In Table Il, the approximation of the first order, was used for the evaluation c
local cd.

Conservative Scheme

The numerical approximations for LE at calculation points along the boundary c
significantly from the formula valid for the bulk. The neighbouring four sides de
mine the flux (current density). To take into account all possible cases, 20 or
point types have to be introduced, depending on the shape of the boundary. TF
gramming has the following steps:

1. Definition of the calculation mesh.

2. Discretization of the curvilinear boundaries.

3. Definition the point types in accordance with their position at the boundary.

4. Definition of the equation coefficients according to the point types and bo
ary/interface conditions.

5. The solution of the system of resulting linear equations, @j.qr similar).

6. Calculation of the current densities using special formulae different for each
type.

7. Calculation of the current integral for each unit along the surface 2B). tp
check the preceding calculation.
A graphical interface for checking the boundary discretization is desirable, anc
problem can be solved using existing graphic libraries provided with every mc
FORTRAN, Pascal, and C compiler. The programming is time-consuming, thoug
computer requirements are not particularly high. All programs were written in
FORTRAN 5.1, and a DX2 66 MHz computer with 12 MB RAM was used. For p
lems with larger meshes, UNIX network servers were employed. Successive rela
method with memory pointers and compressed memory blocks were used, all
large fields to be handled.
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Finite Element Method

The FEM for a cell with a curvilinear boundary requires the development of se
software modules. A mesh generator of triangles can easily be constructed in th
of geometrically defined shapes. Generating the mesh for complex cell shapes, ho
becomes complex. To obtain a uniform and low error distribution in the whole ce
in the region of interest, it is necessary to use equilateral triangles, hence a s
programming strategy. References about that can be found Jodineal of Numerical
Methods in EngineeringFor the calculation of the example treated in this paper
developed a special mesh generator. The mesh generators can be found on the
as part of the standard FEM software. Output of any commercial software can be
if it has the following form: nodes with their indices and coordinates, and triangles
their nodes. Also, it is necessary to have the numbers of the triangles adjacent
electrodes, and the electrode node numbers, necessary for the subroutines in wt
calculation of the locatd is done. The other modules deal with the definition of 1
equation coefficients (Eq89) and @0)), the boundary conditions, the solution of tt
system of linear equations (Ed0f), the calculation of the locald along the electrode
boundaries, and the current flowing through the electrodes.

current density
length of electrode boundary unit, Ed€land (5),
and also length of the electrode boundary (depending on subscripts)

SYMBOLS
Ac,Bc coefficients in theoretical solution, E®)(
a, b coefficients for LE approximation by FDM, Figs 2, 3, and E) (
d dimension of rectangular CS calculation unit, Fig. 6
F vector of right-hand sides, EqR9j and @0)
h dimension of the FDM and CS calculation units, Figs 2, 3, and 6
| current
J
I

M matrix of coefficients, Eqs3@) and 40)

r,ro, ra radii of cylinder, Fig. 1

R(i,j) residuum, Eq.30)

rry,r boundary curves for FEM, Eq8%) and @98)

K conductivity

p resistivity

o standard deviation, Eql9)

[0} potential

$ vector of potentials

Q integration domain, Eq.36)
Subscripts

A anode

C cathode

E electrolyte

M metal
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n
th

e

normalized
theoretical value

Superscript

triangular element, Eq39)
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