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The primary current distribution was calculated in cells with a curvilinear shape of the electrodes by
the finite difference (FDM), the conservative scheme (CS), and the finite element methods (FEM).
These methods were used for the solutions of the Laplace equation (LE) for a 2D cross-section of a
cell consisting of two concentric cylinders (tubes) as electrodes and the inter-electrode space filled
with electrolyte. For this cell the analytical solution of LE is known. The local current density on the
approximated shape of the electrodes was calculated. The error in the normalized local current density
relative to the mean was 5.2%, 52% or 0.2% with FDM using a 64 × 64 mesh, CS using 64 × 64 mesh
or FEM using 969 nodes, respectively. Also the boundary element method (BEM) has been used.
With 199 elements at the electrode the error in the normalized current density was 0.2%. Taking into
account the simplicity of programming and the possibility of using previously developed modules in
other calculations, FEM and BEM showed the best performance.
Key words: Primary current distribution; Curved electrodes; Numerical methods.

One of the technically important problems in electrochemistry is to find the local cur-
rent density (cd) on electrodes, which have curvilinear boundaries of irregular shape.
The shape of the cell is usually so complicated that it is not possible to find a conveni-
ent mathematical transformation of coordinates, which will simplify the calculation of
the Laplace equation (LE) in the inter-electrode space1. One example is the aluminium
electrowinning cell, which has two curvilinear boundaries, one of which is the anode,
the second one is the shape of the frozen cryolite ledge1,2. A similar case is met in lead
acid batteries with tubular lead dioxide electrodes treated by Landfors and Simonsson3, and
the authors also mentioned problems with the approximation of the curved boundary.

The curvilinear boundaries are approximated in different ways for different methods,
as recommended in the literature concerning FDM, CS, and FEM (refs1,2,4–6). These
approximations may lead to a change in the length of the curvilinear boundary and thus
the average cd may change considerably. Also the local values of cd depend on the
approximation of the boundary. The problem of discontinuities of the local values of cd
on rounded corner of electrodes using FDM was observed for the case of primary cur-
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rent distribution by Prentice and Tobias7. To solve the problem, lest square smoothing
was performed over the electrode surface, which was divided into several parts. They
were smoothed separately and then joined by splicing functions. Because both ques-
tions are of technical importance and no comparative analysis has been found in the
literature, this study is an attempt to fill the mentioned gap.

RESULTS AND DISCUSSION

The Solution of LE for the 2D Cross-Section of the Cylindrical Cell

To test the above-mentioned methods, a cell with two symmetrical cylindrical elec-
trodes of radius r0 and r1 was used with the electrolyte occupying the space between the
outer and inner cylinders. One quarter of the 2D cross-section of the cell is considered, see
Fig. 1. For the inter-electrode space filled with an electrolyte of resistivity ρ (conduc-
tivity κ), the Laplace equation (1) is valid. (In this study ρ = 1 Ω cm,  κ = 1 Ω–1 cm–1)

∇2ϕ = 0 (1)

In a polar coordinate system, Eq. (1) takes the form:

∂2ϕ
∂r2  + 

1
r
 
∂ϕ
∂r

 = 0  . (2)

The analytical solution of Eq. (2) is given by

ϕ = Ac ln r + Bc  . (3)

r0

∂ϕ
∂y

 = 0

r1

∂ϕ
∂x

 = 0

B A

C

y

x

FIG. 1
The shape of the 2D cell with tubular anode and
cathode. A anode with potential ϕ(r1) = 1.0 V, C
cathode with potential ϕ(r0) = 0.0 V, B inter-elec-
trode space in which LE was solved. For all cases
r1 = 16 cm, r0 = 64 cm
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The parameters Ac, and Bc can be determined from the boundary conditions valid for the
case of unpolarized electrodes, i.e. primary current distribution:

ϕ(r0) = 0.0 V  ,        ϕ(r1) = 1.0 V  . (4a,b)

From these boundary conditions the following coefficients are obtained:

Ac = 
1

ln 
r1

r0

  , (5)

Bc = − 
ln r0

ln 
r1

r0

  . (6)

For the potential ϕ in the inter-electrode space we have:

ϕ(r) = 
1

ln 
r1

r0

 ln 
r
r0

  . (7)

The local cd in the radial (normal) direction is defined as

j(r) = −κ 



∂ϕ
∂r



r

  . (8)

The cathodic j(r0) and anodic cds j(r1) are given

j(r0) = 
−κ

ln 
r1

r0

 
1
r0

  ,        j(r1) = 
−κ

ln 
r1

r0

 
1
r1

  . (9a,b)

The theoretical value of the current Ith is then:

Ith = 
−2πκ

ln 
r1

r0

  . (10)
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Definition of Quantities Used for the Description of the Results

By all methods, the values of the potentials were obtained in the inter-electrode space.
From these values the cd at the electrode was calculated. With CS the current density
normal to the boundary was evaluated as

ji = Ii / l i
∗  , (11)

where li
∗ represents the length of the unit rectangle (h) or its diagonal (h√2) in the mesh,

see Fig. 3.
With FEM and FDM normal cd to the boundary was evaluated in each node lying on

the boundary by using a first-order approximation with error O(h). The normalized cd
at the cathode is equal to

jn,i = 
j i

j(r0)
  ,        i = 1, 2, …, N (12)

and at the anode

jn,i = 
ji

j(r1)
  ,        i = 1, 2, …, N  , (13)

where N represents the number of units on the boundary. The mean normalized value
of cd was defined by

j
_
n = 

1
N

 ∑ 
i=1

N

jn,i 
l i
∗

l
_

∗
  , (14)

where l
_

∗ represents the average length of one unit, given by

l
_

∗ = 
1
N

 ∑ 
i=1

N

li
∗  . (15)

The length of the approximated electrode boundary is

L∗ = ∑ 
i=1

N

li
∗  . (16)
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The normalized current at the electrode was calculated as

In = j
_
nLn  , (17)

where Ln is the boundary length normalized by the theoretical boundary length Lth:

Ln = 
L∗

Lth
  . (18)

The standard deviation (σ) of the normalized cd is given as 

σ = 







1
N − 1

 ∑ 
i=1

N

(jn,i 
li
∗

l
_

∗
 − j

_
n)2








1/2

  . (19a)

The error (in %) of the normalized cd (j
_
n) is for N > 6 equal to

ε = ±2σ 100  . (19b)

The error (in %) of the normalized current (In) is defined by

ε = ± |In − 1| 100  . (19c)

Averaged cd over p units is given by

j
_
n,p,k = 

1
p

 ∑ 
i=i1

i=i2

jn,i  ,        i1 = k − (p − 1)/2  ,     i2 = k + (p − 1)/2  . (20)

Finite Difference Method

With the FDM the shape of the boundary was not changed, i.e. all the potentials of the
anode were located at r = r1 and all the potentials of the cathode were located at r = r0

(Fig. 1). For a central point (i,j) the LE was approximated by




∂2ϕ
∂x2 + 

∂2ϕ
∂y2



i,j

 = 
1
h2 (ϕ(i + 1,j) + ϕ(i − 1,j) + ϕ(i,j + 1) + 

+ (ϕ(i,j − 1) − 4ϕ(i,j)) + O(h2)  . (21)
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If the surface of the electrode is represented by a smooth curve for a 2D cross-section,
the approximation of the LE by Eq. (21) has an accuracy O(h2) (ref.5). For points (i,j)
located near the boundary the following equation was used, valid for point A in Fig. 2.





∂2ϕ
∂x2 + 

∂2ϕ
∂y2



A

 = 
1
h2 





ϕC

a(1 + a) + 
ϕB

1 + a
 + 

ϕE

b(1 + b) +

+ 
ϕD

1 + b
 − 





(a + b)ϕA

ab




 + O(h2)  . (22)

Depending on the shape of the boundary, different modes of Eq. (22) were developed,
see Table I and refs5,6. The resulting matrix of coefficients is usually asymmetric, but

BA

C

ah h

D

E

h

bh

FIG. 2
The scheme of the curvilinear boundary and the
points necessary for approximation by interpola-
tion for FDM. See also Eq. (22)

TABLE I
Values of the coefficients a and b used in Eq. (22) for different point types. See also Figs 2 and 3

Point type ϕA ϕB a b Comment

1     0.0     0.0 a b

2     0.0     ϕ(i + 1,j) a 1

3     ϕ(i,j  + 1)     0.0 1 b

4 – – – – ϕ(i,j) = 0.0

5 – – – – ϕ(i,j) = 1.0

6     1.0     ϕ(i – 1,j) a 1

7     ϕ(i,j  – 1)     1.0 1 b
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there exist methods for obtaining a symmetric matrix5,6. The values of the coefficients
a and b in Eq. (22) are given for different point types in Table I, as indicated in Figs 2
and 3.

Table II shows maximum and minimum values of the normalized cd obtained by the
FDM, mean normalized value of cd, standard deviation of the normalized cd and the
normalized current. From this table we can conclude that:

1. FDM is not a conservative method. FDM leads to different anode and cathode
currents. By increasing the number of calculation points in the mesh the error in the
normalized current decreases from 8.5% (|0.9151 – 1| . 100) for an 8 × 8 mesh to 1.2%
(|0.9878 – 1| . 100) for a 64 × 64 mesh.

A

4

ah bh

1

43

3

1

3

1

1

5

7

65

h

22

2

FIG. 3
Finite difference mesh 8 × 8 with the boundary
point types 1 to 7. A rectangle covering points for
the calculation of cd with O(h2) error at point 1, h
nodes distance

TABLE II
Normalized values of cd, j

_
n, σ, and In, obtained by FDM. A anode; C cathode

Mesh
dimensions

Electrode jmax jmin j
_
n σ In

8 × 8 C 1.0494 0.9876 1.0264 0.0507 1.0265

A 0.9819 0.8482 0.9151 0.1336 0.9151

16 × 16 C 1.0309 1.0018 1.0166 0.0321 1.0166

A 0.9975 0.9018 0.9547 0.0647 0.9547

32 × 32 C 1.0159 1.0005 1.0082 0.0215 1.0083

A 1.0001 0.9437 0.9758 0.0441 0.9762

64 × 64 C 1.0079 1.0000 1.0039 0.0137 1.0039

A 1.0000 0.9700 0.9878 0.0261 0.9878
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2. The local values of normalized cd oscillate around the mean normalized cd, but the
oscillations decrease considerably with increasing number of mesh points. For the 8 × 8
mesh the error in the local normalized cd was 26.6% (2 . 0.1336 . 100) and for the mesh
of 64 × 64 points the error was only 5.2% (2 . 0.0261 . 100).

Local normalized current densities along the cathode obtained by FDM for the mesh
with 64 × 64 calculation units are given in Fig. 4.

Conservative Scheme Method

The electrolytic cell shown in Fig. 1 was considered. The inter-electrode space was
divided into rectangles and the electrodes were approximated by boundaries of rec-
tangles. In the other case some parts of the electrodes were approximated by diagonals
(Fig. 5). The boundaries for the 16 × 16 units are shown, but the calculation has also
been carried out for 8 × 8 units, 32 × 32 units and 64 × 64 units. For more details about
the method see refs1,2. The currents flowing in and out of the unit rectangle (i,j) are
denoted according to Fig. 6 as Ik,l. The first subscript refers to the unit boundary line at
which the current leaves the cell, and the second to the boundary line at which the
current enters. For example, a current going from the boundary line m = 1 to the line m = 2 of
the neighbouring unit is written as:

I1,2 = − 
ϕ(i − 1,j) − ϕ(i,j) − A(i,j,1,2)

ρ(i − 1,j) d
2d

 + ρ(i,j) d
2d

  . (23)

Equation (23) can be rewritten as:

I1,2 = −2 
ϕ(i − 1,j) − ϕ(i,j) − A(i,j,1,2)

ρ(i − 1,j) + ρ(i,j)   . (24)

0.00       0.20         0.40         0.60         0.80       1.00

1.0100

1.0075

1.0050

1.0025

1.0000

jn

lc,n

FIG. 4
Local normalized current densities along the
cathode obtained by FDM. Mesh of 64 × 64
calculation units. jn – Normalized local cd at
the cathode, see also Eq. (12); lc,n – normalized
cathode boundary length (lc,n=0 at the begin-
ning and lc,n=1 at the end of the cathode)
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Similar equations are valid for I2,1, I3,4 and I4,3:

I2,1 = −2 
ϕ(i + 1,j) − ϕ(i,j) − A(i,j,2,1)

ρ(i + 1,j) + ρ(i,j)   , (25)

I3,4 = −2 
ϕ(i,j − 1) − ϕ(i,j) − A(i,j,3,4)

ρ(i,j − 1) + ρ(i,j)   , (26)

I4,3 = −2 
ϕ(i,j + 1) − ϕ(i,j) − A(i,j,4,3)

ρ(i,j + 1) + ρ(i,j)   . (27)

In Eqs (23) to (27), the terms A(i,j,k,l) represent the voltage drop at the boundary be-
tween the sides k and l of the unit. This voltage drop is equal to the electrode potential
at the electrode–electrolyte boundary. In the electrolyte, or in the electrode material,
A(i,j,k,l) is equal to zero. For the stationary state, the integral of the cd (jn) normal to
the surface (dS) along the boundary of the unit rectangle, must be equal to zero. This
applies also for any closed surface or volume in the cell:

∫ jn dS = 0  . (28)

y

x

a b

❍

FIG. 5
CS method. Curved anode boundary approximation using two methods: a boundaries formed by rec-
tangles, b boundaries formed by the combination of rectangles and diagonals. Mesh of 16 × 16 units
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Equations (24) to (27) are used for the evaluation of Eq. (28). Alternatively, Eq. (29)
can also be used,

I1,2 + I2,1 + I3,4 + I4,3 = 0  . (29)

On the basis of Eqs (28) and (29) the residuum R(i,j) can be introduced:

R(i,j) = 2 



ϕ(i − 1,j) − ϕ(i,j)
ρ(i − 1,j) + ρ(i,j)  + 

ϕ(i + 1,j) − ϕ(i,j)
ρ(i + 1,j) + ρ(i,j)  +

+ 
ϕ(i,j − 1,) − ϕ(i,j)
ρ(i,j − 1) + ρ(i,j)  + 




ϕ(i,j + 1) − ϕ(i,j)
ρ(i,j + 1) + ρ(i,j)




  . (30)

Equation (30) is valid for the electrolyte or electrode material, where the terms A(i,j,k,l)
are set equal to zero; it is satisfied if for all the points (i,j) in the 2D space

R(i,j) = 0  ,        i, j ∈ Ω  . (31)

Equation (29) represents the so-called conservative scheme for the calculation of Gal-
vani potentials in the considered space. (“Conservative” means that all the current flow-
ing into the cell also flows out.) The conservative scheme with residuum R(i,j) given by
Eq. (30) also fulfills the LE for a space with changing resistivity.

(i – 1,j + 1) I4,2

I1,3

(i,j + 1)

I4,3

I4,1

I2,3

(i + 1,j + 1)

(i + 1,j )

I2,1(i – 1,j ) I1,2

(i,j )

m = 4

m = 3

m = 1 m = 2

I3,4
I1,4

I3,2
(i – 1,j – 1) (i,j – 1)

h = 2d

I3,1

I2,4

(i + 1,j  – 1)

FIG. 6
CS method. Notation of currents for a rectan-
gular grid in 2D space. The fluxes are denoted
as I and the indices follow the notation of
boundaries. Boundary indices of the calcula-
tion unit are denoted as m
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∇(1
ρ∇ϕ) = 0 (32)

Equation (32) can generally be approximated in such a way that the conservation of
current is not preserved. The most often used approach which is not conservative is
FDM.

The curved boundaries were approximated by using: (i) a boundary of rectangular
elements, (ii) boundaries formed by a combination of rectangular and diagonal ele-
ments (diagonal approximation of the boundary)8. In Fig. 6, all the possible fluxes are
denoted, which may be used if rectangular or diagonal boundaries exist outside the (i,j)
unit. For the case of rectangular boundaries Eq. (29) is valid. For the case of a unit cell
with diagonal boundaries in Fig. 7, the analogy of Eq. (29) should be written as:

I1,2 + I3,4 + I2,3 + I4,1 + I2,4 + I4,2 = 0  . (33a)

For the fluxes I4,2 and I2,4, denoted by the dotted arrows in Fig. 7, the following formu-
lae are valid:

I4,2 = 
ϕ(i − 1,j + 1) − ϕ(i,j)
ρ(i − 1,j + 1) + ρ(i,j)   , (33b)

I2,4 = 
ϕ(i + 1,j − 1) − ϕ(i,j)
ρ(i + 1,j − 1) + ρ(i,j)   . (33c)

(i – 1,j + 1)
I4,1

I2,3

(i + 1,j + 1)

(i,j )

I4,2

I2,4

(i + 1,j  – 1)

(i – 1,j + 1)

I4,2

(i + 1,j + 1)

I4,1 I2,3

I1,2

I3,4

I2

(i + 1,j – 1)

(i,j )

a

b

FIG. 7
Curved boundary approximation using diago-
nal boundary: a the shape of the diagonal ele-
ment, b position of the diagonal element in
the mesh and its fluxes
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In Table III the results of the calculation of the normalized local cd at the boundaries
of the electrodes by CS are shown. The calculations were carried out by using four
meshes with 8 × 8, 16 × 16, 32 × 32, and 64 × 64 units, and rectangular and diagonal
approximations of the curvilinear boundary. The results for both electrodes are given.
For the mesh of 64 × 64 units, the normalized local cd along the cathode for both
approximations are given in Figs 8 and 9. Averaging of the normalized cd was also
carried out, and the obtained results for p = 5 units (window widths) are given in Figs 10
and 11. The averaging improved the local normalized cd values to a small extent. How-
ever, the length of the averaging interval (or the p number), for which the errors are
restricted to 2%, represents the whole length of the cathode. Large p numbers are not
suitable for an irregularly shaped curvilinear boundary, because usually the geometry
will not be uniform and continuous as in the studied case. This means that large errors

TABLE III
Normalized values of cd, j

_
n, σ, and In, obtained by CS. A anode; C cathode

Mesh dimensions
and boundary
aprox. type

Electrode jmax jmin j
_
n σ In Ln

8 × 8 A 1.2358 0.5414 0.7625 0.2672 0.9709 1.2732
   Rectangular C 0.9813 0.5437 0.7625 0.2562 0.9709 1.2732

16 × 16 A 1.4084 0.5310 0.7950 0.2674 1.0123 1.2732
   Rectangular C 1.0951 0.5993 0.7950 0.2236 1.0123 1.2732

32 × 32 A 1.3812 0.4916 0.7980 0.2798 1.0161 1.2732
   Rectangular C 1.1752 0.4997 0.7980 0.2440 1.0161 1.2732

64 × 64 A 1.3432 0.4893 0.7895 0.2697 1.0053 1.2732
   Rectangular C 1.2385 0.4666 0.7895 0.2533 1.0053 1.2732

8 × 8 A 1.1974 0.5436 0.9791 0.2637 1.0183 1.0401
Diagonal C 0.9902 0.8995 0.9371 0.1348 1.0183 1.0867

16 × 16 A 1.3292 0.5391 0.9209 0.2765 0.9793 1.0634
Diagonal C 1.0314 0.6247 0.9012 0.2700 0.9793 1.0867

32 × 32 A 1.3259 0.5428 0.9477 0.2636 0.9967 1.0518
Diagonal C 1.1380 0.6110 0.9583 0.2400 0.9967 1.0401

64 × 64 A 1.2889 0.5348 0.9528 0.2591 1.0221 1.0518
Diagonal C 1.1334 0.5539 0.9635 0.2512 1.0221 1.0401
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(20%) in local normalized cd can be expected, even when some reasonable averaging
of the cd is employed.

The following conclusions about CS are worth mentioning:
1. When the electrode boundaries are approximated by a boundary of rectangles, the

ratios of the maximum and minimum values of the local normalized cd to the theoreti-
cal one reached 1.41 and 0.466. The cd values did not tend to become more uniform
with increasing number of units in the mesh. The mean normalized current density is
approximately 76–80% of the theoretical value, due to the increase of the length of the
boundary used in comparison with the theoretical; Ln is 1.27.

0.00       0.20          0.40         0.60          0.80         1.00

1.60

1.40

1.20

1.00

0.80

0.60

0.40

jn

lc,n

FIG. 9
Normalized local values of cd (jn) along the
normalized cathode boundary (lc,n). CS diago-
nal boundary approximation; mesh 64 × 64

0.00       0.20          0.40         0.60          0.80         1.00

1.60

1.40

1.20

1.00

0.80

0.60

0.40

jn

lc,n

FIG. 8
Normalized local values of cd (jn) along the
normalized cathode boundary (lc,n). CS rectan-
gular boundary approximation; mesh 64 × 64
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2. When the electrode boundaries are approximated by a boundary of rectangles and
diagonals, the ratios of the maximum and minimum values of the normalized local cd
to the theoretical reached 1.33 and 0.53. These values did not tend to become more
uniform with an increasing number of units in the mesh. The mean normalized current
density is close to the theoretical value, i.e. 0.90 up to 0.98. This is due to a good
approximation of the boundary; Ln changes between 1.04 and 1.08. The error of the
calculated potentials ϕ(r) is about 50% of the theoretical value near the boundaries, but
at a distance of 3 units from the boundaries the error in ϕ(r) falls down to about 1%,
and in the middle of the cell it is below 0.2% for the 64 × 64 mesh. The different
approximations of the curvilinear boundary create different cell geometries, which re-

1.20

1.00

0.80
0.00                    0.20                     0.40                     0.60                      0.80                     1.00

jn

lc,n
FIG. 11

Normalized local cd (jn) at the normalized cathode boundary (lc,n) after averaging with p = 5. CS
diagonal boundary approximation; mesh 64 × 64

1.20

1.00

0.80
0.00                    0.20                     0.40                      0.60                       0.80                     1.00

jn

lc,n

FIG. 10
Normalized local cd (jn) at the normalized cathode boundary (lc,n) after averaging with p = 5. CS
rectangular boundary approximation; mesh 64 × 64
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sult in different error distributions, see Figs 8 and 9. The cathode length used in Figs 8
and 9 is referred to the theoretical length of the whole cathode.

Finite Element Method

The interelectrode space (Fig. 1) was divided into triangular elements by selecting
points on the boundaries (electrodes) as shown in Fig. 12. The transformation of the
boundary problem to a variational formulation in Galerkin’s form1,4 was done for the
Laplace equation written in x, y coordinates:

∂2ϕ
∂x2 + 

∂2ϕ
∂y2  = 0  ,        x, y ∈ Ω  , (34)

valid for constant ρ. The essential boundary condition was applied to the anode and
cathode boundary, denoted as Γ1.

ϕ = ϕ
__

(x,y)  ,        on Γ1 . (35)

On insulated surfaces Γ2, the normal component of the current is prescribed

jn = −κ 
∂ϕ
∂x

 = 0  or  jn = −κ 
∂ϕ
∂y

 = 0  on  Γ2 , (36)

corresponding to the nonessential boundary condition. Consequently:

80.00

60.00

40.00

20.00

 0.00
0.00           20.00           40.00            60.00          80.00

x, cm

y, cm

FIG. 12
The finite element calculation mesh. 45
nodes and 66 triangles
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Γ = Γ1 + Γ2  . (37)

By using the Galerkin’s variational statement and rearranging the weighted integral of
the residual using Green’s theorem, the variational formulation of Eq. (34) was ob-
tained in the form:

∫∫ 

∂ϕ(n)

∂x
 
∂δϕ(n)

∂x
 + 

∂ϕ(n)

∂y
 
∂δϕ(n)

∂y



 dx dy = −∫ 

jn
κ  δϕ(n) dΓ  . (38)

This formulation is suitable for the application of FEM. The elements and nodes were
numbered to specify the element-node correspondence. Thus we obtain a system of
equations which can be written in the following form:

M(e) ϕ̂(e) = F(e)  ,        e ∈ Ω  , (39)

where M (e) is the characteristic matrix of the element and F(e) is the vector of the right-
hand sides. As a further step, Eqs (39) for all the elements were summed up giving the
resulting matrix equation

M ϕ̂ = F  . (40)

The matrix of the system is denoted as M and the unknown system nodal vector as ϕ̂.
All the nodes in the given domain Ω are now referred to by the global numbering
system from l to m, where m is the total number of nodes in Ω. Firstly the essential
boundary conditions are introduced, then the system of linear equations has to be
solved to obtain the vector ϕ̂  for all nodal points. For more details, see refs1,4.

In Table IV, the maximum and minimum values of the normalized cd obtained with
the FEM are given. The following conclusions follow from Table IV and Fig. 13:

1. The FEM is not conservative, which means that the total current on the anode is
not the same as the total current on the cathode. The deviations of the calculated nor-
malized current from the theoretical were ±15%, at a low number of nodes equal to 27.
They tend to zero, when the number of nodes increases. For 969 nodes the error in the
total normalized current was only ±2.1%.

2. The error in the local normalized cd was ±1.2% for 27 nodes, and it decreased
with an increasing number of nodes. For 969 nodes, the error in the local normalized cd
was only 0.24%. As shown in Fig. 13, only small changes in the local cd appear at the
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ends of the cell space, where nonequilateral triangles were used. By avoiding the use of
nonequilateral triangles a very high accuracy can be achieved.

3. The approximation of the shape of the boundary by triangles can be very close to
the theoretical boundary. For 27 nodes, Ln was 0.9935, and for 969 nodes it was 0.9998.
For more information on the methods used in the present work see Appendix.

Boundary Element Method

Also the boundary element method9 (BEM) with constant elements has been used for
the solution of the Laplace equation in 2D. This numerical method calculates only the
unknowns at the boundary of the domain, requesting additional calculations to get the
values of the potential and cd in the domain9. It is possible to use advantages of the
combination of the BEM and FEM (ref.10).

TABLE IV
Normalized values of cd, j

_
n, σ, and In, obtained by FEM. A anode; C cathode

Number of nodes
and triangles

Electrode jmax jmin j
_
n σ In

27 nodes  C 0.8613 0.8518 0.8572 0.0039 0.8572
36 triangles A 1.1654 1.1531 1.1584 0.0056 1.1584

45 nodes  C 0.8897 0.8811 0.8861 0.0033 0.8861
66 triangles A 1.1297 1.1191 1.1235 0.0044 1.1235

149 nodes   C 0.9448 0.9399 0.9435 0.0017 0.9435
252 triangles A 1.0626 1.0572 1.0586 0.0020 1.0586

313 nodes   C 0.9632 0.9597 0.9625 0.0010 0.9625
558 triangles A 1.0413 1.0377 1.0384 0.0012 1.0384

969 nodes   C 0.9795 0.9775 0.9792 0.0005 0.9792
1 815 triangles  A 1.0207 1.0164 1.0204 0.0012 1.0204

0.99

0.98

0.97
0.00                     0.20                       0.40                       0.60                       0.80                        1.00

jn

lc,n

FIG. 13
Normalized local current densities (jn) along the normalized cathode boundary (lc,n) obtained by FEM Mesh
with 969 nodes
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The results obtained by the use of the BEM were very similar to those obtained with
the FEM. With 199 boundary elements on the cathode, the error in the normalized cd
was 0.2% (but the number of unknowns was only 4 × 199). In Fig. 14 the normalized
current density along the cathode, calculated using the BEM, is shown.

CONCLUSIONS

For the cells with primary current distribution and curved electrode boundaries studied
in this paper, the following recommendations for the use of FDM, CS, and FEM can be
made:

Firstly, FEM is recommended because of low errors, less than 0.2% in the nor-
malized local cd, using approximately 1 000 nodes in the inter-electrode space. The
method can be easily programmed. Mesh generators, which minimize the number of
nonequilateral triangles at the electrode boundary, should be used. The nonequilateral
triangles are sources of local errors. The error in the local cd decreases with increasing
number of triangles and with the use of nearly equilateral triangles. Developed modules
can be used in different calculations.

Secondly, FDM leads to small errors, less than 5.2%, in the normalized local cd, with
a 64 × 64 mesh. The error decreases with increasing number of points in the mesh. Two
neighbouring points may have errors of different signs in the local cd. The normalized
local cd differs by one to two per cent from the mean normalized cd.

Thirdly, the CS methods lead to high errors in the local cd (approximately 50%), and
these errors change sign for two neighbouring rectangles. When increasing the number
of points in the mesh, the errors in the local cd are not damped appreciably. Hence, this
method cannot be recommended for curved electrode boundaries.

1.012

1.008

1.004

1.000

0.996
0.00      0.20         0.40        0.60        0.80        1.00

jn

lc,n

FIG. 14
Normalized local current densities (jn) along
the normalized cathode boundary (lc,n) ob-
tained by BEM. 199 constant elements at the
cathode boundary (4 × 199 unknowns in the
whole cell).
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APPENDIX

For a cell that has curvilinear electrode boundaries for which suitable mathematical
transformation cannot be developed (see ref.1), approximations of the shape of these
boundaries have to be used. Each of the above-mentioned methods has its own rules for
the approximation of the curved boundary.

Finite Difference Method

The numerical approximations for the Laplace equation at calculation points along the
boundary are significantly different from the formula valid for the bulk electrolyte
(compare Eqs (21) and (22)). To take into account all possible cases, 7 point types have
to be introduced, see Figs 2 and 3, and Table I.

The programming process should have the following steps:
1. Construction of the basic mesh system.
2. Determination of points close to the boundary and their types.
3. Determination of their distances from the boundary in both directions.
4. Definition of equation coefficients according to point types.
5. Solution of the resulting system of linear equations.
6. Calculating the current densities.
Two different methods can be used to calculate the current densities. The programming

is easier when using a first-order approximation taking into account one mesh point and
a value of the potential at the boundary. The second-order approximation uses none-
quidistant local meshes for the calculation of cd. One of them is illustrated in Fig. 3.
With a nonequidistant mesh, the method of undetermined coefficients can be used to
develop the formulae in the x direction. The following formula is used for the local cd:

f(k)(x) = ∑ ci f(xi) + R(f)  . (41)

The coefficients should be chosen in such a way as to obtain R(f) = 0. When
f = 1; x; x2; x3; …; xn, a following system of linear algebraic equations is obtained.

c0 + c1 + cn = 0                                                            

c0x0 + c1x1 + … + cnxn = 0        (= 
dk

dxk (x) ||x=x
_)

…                                      

c0x0
k−1 + c1x1

k−1 + … + cnxn
k−1 = 0
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c0x0
k + c1x1

k + … + cnxn
k = k!        (= 

dk

dxk (x
k) ||x=x

_)

c0x0
k+1 + c1x1

k+1 + … + cnxn
k+1 = (k + 1) ! x

_

…                                      

c0x0
n + c1x1

n + … + cnxn
n = n(n − 1) … (n − k + 1) ! x

_
n−k (42)

In the y direction the points for the calculation have to be obtained by interpolation
using neighbouring points. The resulting cd is obtained as a vector summation of these
two local current densities. This method is accurate but time consuming for programm-
ing. In Table II, the approximation of the first order, was used for the evaluation of the
local cd.

Conservative Scheme

The numerical approximations for LE at calculation points along the boundary differ
significantly from the formula valid for the bulk. The neighbouring four sides deter-
mine the flux (current density). To take into account all possible cases, 20 or more
point types have to be introduced, depending on the shape of the boundary. The pro-
gramming has the following steps:

1. Definition of the calculation mesh.
2. Discretization of the curvilinear boundaries.
3. Definition the point types in accordance with their position at the boundary.
4. Definition of the equation coefficients according to the point types and bound-

ary/interface conditions.
5. The solution of the system of resulting linear equations, (Eq. (30) or similar).
6. Calculation of the current densities using special formulae different for each point

type.
7. Calculation of the current integral for each unit along the surface (Eq. (28)) to

check the preceding calculation.
A graphical interface for checking the boundary discretization is desirable, and this
problem can be solved using existing graphic libraries provided with every modern
FORTRAN, Pascal, and C compiler. The programming is time-consuming, though the
computer requirements are not particularly high. All programs were written in MS
FORTRAN 5.1, and a DX2 66 MHz computer with 12 MB RAM was used. For prob-
lems with larger meshes, UNIX network servers were employed. Successive relaxation
method with memory pointers and compressed memory blocks were used, allowing
large fields to be handled.
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Finite Element Method

The FEM for a cell with a curvilinear boundary requires the development of several
software modules. A mesh generator of triangles can easily be constructed in the case
of geometrically defined shapes. Generating the mesh for complex cell shapes, however,
becomes complex. To obtain a uniform and low error distribution in the whole cell or
in the region of interest, it is necessary to use equilateral triangles, hence a special
programming strategy. References about that can be found in the Journal of Numerical
Methods in Engineering. For the calculation of the example treated in this paper we
developed a special mesh generator. The mesh generators can be found on the market
as part of the standard FEM software. Output of any commercial software can be taken
if it has the following form: nodes with their indices and coordinates, and triangles with
their nodes. Also, it is necessary to have the numbers of the triangles adjacent to the
electrodes, and the electrode node numbers, necessary for the subroutines in which the
calculation of the local cd is done. The other modules deal with the definition of the
equation coefficients (Eqs (39) and (40)), the boundary conditions, the solution of the
system of linear equations (Eq. (40)), the calculation of the local cd along the electrode
boundaries, and the current flowing through the electrodes.

SYMBOLS

Ac, Bc coefficients in theoretical solution, Eq. (3)
a, b coefficients for LE approximation by FDM, Figs 2, 3, and Eq. (22)
d dimension of rectangular CS calculation unit, Fig. 6
F vector of right-hand sides, Eqs (39) and (40)
h dimension of the FDM and CS calculation units, Figs 2, 3, and 6
I current
j current density
l length of electrode boundary unit, Eqs (14) and (15), 

and also length of the electrode boundary (depending on subscripts)
M matrix of coefficients, Eqs (39) and (40)
r, r0, r1 radii of cylinder, Fig. 1
R(i,j) residuum, Eq. (30)
Γ, Γ1, Γ2 boundary curves for FEM, Eqs (35) and (38)
κ conductivity
ρ resistivity
σ standard deviation, Eq. (19)
ϕ potential

ϕ̂ vector of potentials
Ω integration domain, Eq. (34)

Subscripts
A anode
C cathode
E electrolyte
M metal
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n normalized
th theoretical value

Superscript
e triangular element, Eq. (39)

The authors thank to Prof. J. Thonstad (NTH, Trondheim, Norway) for his continuous interest and
valuable discussions.
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